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Accurate Analysis Equations and Synthesis
Technique for Unilateral Finlines

PROTAP PRAMANICK AND PRAKASH BHARTIA, SENIOR MEMBER, IEEE

Abstract —Accurate analysis equations and synthesis techniques are
presented for unilateral finlines, valid over a wide range of structural
parameters and substrate dielectric constants (1 < ¢, < 3.75). These expres-
sions are usable for computing the cutoff wavelength to within +0.6
percent, the guided wavelength to within + 2 percent, and the characteristic
impedance (based on the power—voltage definition) to within +2 percent,
of the spectral-domain method, over the normalized frequency range
025<b/A<06.

1. INTRODUCTION

INLINE IS AN ideal transmission line for

millimeter-wave circuits because it avoids miniaturiza-
tion and offers the potential for low-cost production
through batch processing techniques [1], [2]. It is also easily
compatible with semiconductor devices. It has wide band-
width for single-mode operation, moderate attenuation,
and low dispersion in the frequency range of interest.
These properties have made it more popular than micro-
strip about 30 GHz.

Dispersion in finline has been accurately analyzed by
Hofmann [3], Knorr and Shayda [4], Schmidt and Itoh [5],
Beyer and Wolff [6], Sharma, Costache, and Hoefer [7],
Shih and Hoefer [8], and Saad and Schunemann [9]. These
analyses use the eigenmode analysis in space or the spec-
tral-domain, finite-element method, or a two-dimensional
transmission-line matrix. The network analytical method of
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electromagnetic fields, which is similar to the spectral-
domain technique, was extended to the more general case
of higher order modes by Hayashi, Farr, and Mittra [10].
Although the above-mentioned methods are highly accu-
rate, they require considerable analytical effort and lead to
complicated computer programming.

Besides the rigorous analyses above, the propagation
constant in finlines has been approximated by various
methods. Many authors have treated finlines as ridged
waveguides [11], [12]. But the resulting expressions are of
poor accuracy for the guided wavelength and the character-
istic impedance. For an adequately accurate expression for
the effective dielectric constant of finlines, one has to
depend on experimental data [1] from expensive and time-
consuming sample measurements. Therefore, in spite of all
the advantages of a novel transmission line, the basic
problem faced by the designers is the cumbersome design
procedure.

Consequently, there remains a strong need for accurate
closed-form expressions for the equivalent diclectric con-
stant and characteristic impedance for finlines. Recently,
Sharma and Hoefer [13] have presented purely empirical
expressions for the cutoff wavelength of unilateral and
bilateral finlines, which were developed by curve fitting to
numerical results obtained by the spectral-domain tech-
nique [7]. Because of their purely empirical nature, these
expressions are valid for a small range of finline geome-
tries. For example, the equations are valid for 1/16 < d /b
<1/4, b/a=05, and €, =222 and 3.00 only (see Fig.
1(a)). Moreover, different equations are required for dielec-
tric substrates of different permittivity values.

0018-9480/85/0100-0024$01.00 ©1984 IEEE



PRAMANICK AND BHARTIA: UNILATERAL FINLINES

s
écer'—?' “ 1
g9 b—s
@
mlls
9 -]
Cofr'% _l
bggd By

®)

Fig. 1. (a) Unilateral finline. (b) Complementary unilateral finline.

Hence, the equations are of limited use and inap-
propriate for other dielectric substrates.

In the present work, accurate closed-form expressions
are developed for the theoretical prediction of equivalent
dielectric constants at cutoff and the cutoff wavelength of
unilateral finlines. The expressions are accurate to within
+0.6 percent. They have been derived using a stationary
formula and curve fitting to numerical results of the spec-
tral-domain method. The expressions are valid over the
range (see Fig. 1(a))

0<b/ax1
1/64<s/a<1/4

1/32<d/b<1.00
1<e,<3.75.

In addition, unlike Sharma and Hoefer’s [13] expres-
sions, the present expressions are less arbitrary and the
constants appearing in them are independent of substrate
dielectric constants for the most commonly used substrate
materials.

II. EXPRESSIONS FOR GUIDED WAVELENGTH AND
FREQUENCY-DEPENDENT CHARACTERISTIC
IMPEDANCE

The guided wavelength in finline is defined as

A=A/e (1) 1)

where A is the free-space wavelength and e,(f), the
frequency-dependent effective dielectric constant of the
finline, is given by [1]

e(f)=k.~(A/A,) 2
where k, is the equivalent dielectric constant at frequency
f corresponding to wavelength A, and A, is the cutoff
wavelength of a finned waveguide of identical dimensions
and completely filled with air. It has been shown in [14]
that for moderate €,(¢, < 2.5) and thin substrates one can
make a first-order approximation by equating k, to its
value k, at cutoff frequency. Otherwisé, k, must be con-
sidered frequency-dependent and has the general form [13]

k,=k.f(d/b,s/a,b/\,¢,) 3)
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where

kc= (Acf/kca)2 (4)

and A, is the cutoff wavelength of the finline.

An empirical expression for the function f(d/b,
s/a,b/\,¢,) in (3) is given in [13]. Having defined the
effective dielectric constant e (f), the characteristic im-
pedance of the finline is defined as

Zo=Zooo/er(f) (%)

where Z,,_, according to the ridged guide model [1], is the
characteristic impedance at infinite frequency of the equiv-
alent finned waveguide of identical dimensions.

III. DERIVATION OF THE FORM OF THE EXPRESSION

The unilateral finline shown in Fig. 1(a) can be thought
of as a combination of a finned waveguide and a wave-
guide loaded with a centered dielectric slab in the E-plane.
The cutoff wavelength A, of the finned waveguide can be
determined accurately using the following equation [15]:

-1,2
1+ i(é) 1+o.2\/z 1ncosec(11) :
wm\a a 2b
(6)
The cutoff wavelength A, of the dielectric loaded wave-
guide can be obtained, for small s/a and e,, using the

stationary formula [16], obtained from the variational tech-
nique, as

b _b
A, 2a

ca

b b 2s 1 . (2as -172
}\Cd——z-z[1+0.5(7+ﬂsm( i )(e, 1)] ()

The derivation of (7) using the variational formula [16]
assumes a sinusoidal field distribution in the transverse
cross section of the guide. The field distribution has the
form
= . (7
E,=y sm(———) (8)
where 7 is the unit vector in the y-direction.

For a general field distribution in the transverse cross
section of the waveguide, (7) can be written as

b b Ky -1/2
x;“z—gll”(;)(fr‘”]

where the function F(s/a) depends upon the nature of the
field distribution. Equation (9) has a stationary form.
Therefore, it remains unchanged for small variations in e,,
s/a, and frequency. For example, the inaccuracy of (7) is
less than 0.8 percent for s/a <1/4, which may be the
thickest substrate used for finlines.

Now, consider the combination of the finned waveguide
with the dielectric loaded waveguide. Due to the presence
of the fins, the fields tend to concentrate in the vicinity of
the fins, and the field distribution in the transverse cross
section of the guide no longer remains a function of s/a
only but also becomes a function of d/b.

~
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Therefore, (9) assumes the form

- 2lr(2 ) -0 o)

Once the function F(s/a,d/b) is known, the cutoff

wavelength A . of the unilateral finline of Fig. 1(a) can be
obtained using (2), (6), and (10) as

}\%f 2ba [{H 4 (b)(1+0_2\/§)lncosec(2 Z)}
{1+F( ,b)(f 1)}]_1/2

IV. DERIVATION OF THE FUNCTION F(s/a, d /b)
Equation (11), when solved for F(s/a, d /b), gives

(11)

Fig. 3. The two graphs can be represented by the equations

al(a) 04020974(111( ))2

~0. 7684487111( )+0 3932021 (18)

bi(%) =2.425in(0.5561n(;)>. (19)

From (10), the equivalent dielectric constant at cutoff is
given by

k,=1+ %[al(%)lncosec(% %)«Fbl(%)](e,—l)

PN

Expressing

F(%,g—)={al(a)lncosec(2 Z)+b( )}% (13)

and using the accurately computed values of A, from the
spectral-domain technique [7] and (12), the function
F(s/a,d/b) can be computed for several combinations of
s/a and d /b. The computed results are plotted in Fig. 2
(F(s/a,d/b)a/s) versus Incosec((w/2)(d /b)) with s5/a
as a parameter). From the plots, we find that the curves are
almost linear and the slopes and intercepts are functions of
the s /a values. Slopes are larger for smaller s /a.

Using least-squares curve fitting gives the following set
of equations for four different values of s/a for €, = 2.22:

al( ) 0.1006616
a

for &= % (14)
bl( ) 1.6926529 a
a
a (1) = 0.5339579
Na s 1
s for — = 3 (15)
bl( —) — 2.1643506 a
a
al(i) 1.353632
a s 1
s fOI' —_= E (16)
bl( —) 2.4213244 a
a
al(i) 2.5611088
a s 1
5 for — = 3—2 . (17)
b (;) 2.3070609 a

a,(s/a) and b,(s/a) are plotted as functions of In(s/a) in

(e,-1)

(20)
which shows that k. depends linearly on e,.
1+ i(é) 1+0.2y b lncosec(zc—l) -1
T\a a 2 b
. (12)

From (20), the dielectric filling factor can be written as

— 2% ncosec(24)45,()]. a1

Once k, has been obtained, the frequency-dependent effec-
tive dielectric constant can be obtained using (2) and (3).

k-1
9= €,—1

V. CHARACTERISTIC IMPEDANCE

The definition of characteristic impedance for finlines is
not unique. It depends upon the application. According to
Meinel and Rembold [17], the characteristic impedance of
a finline should be defined in terms of voltage and current
in the finline, where voltage is defined as the line integral
over the electric field between the fins taken along the
shortest path on the substrate surface, and current is the
total longitudinal current in the structure. This definition is
useful for switching applications and particularly suitable
for beam-lead devices. On the other hand, Meier [1] defines
the characteristic impedance on a power—voltage basis and
uses a ridged waveguide model for the finline. For his
model, the term Z,_ in (5) is frequency-independent. But,
in practice, Z, rises slowly with frequency as the crowd-
ing of the electric field causes the fin gap voltage to rise.
This has been observed by computation of Z, using the
network analytical technique [10]. Keeping the above facts
in mind, the following expression for Z, has been derived
by curve fitting to the spectral-domain results:

24072( px + q)(b/a)

- (0.385x +1.762)* /e, (/)

(22)
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Fig. 2. Least-squares curve fitting to SDM data.

where

b\? b a\]?
p= —0.763(X) +O.58(X)+0.O775[ln(—)]

—0. 668{111( )] +1262 (23)
q= 0.372(%) +0.914, ford/b>0.3 (24) -
and
b
p= 0.17(X)+0.0098 (25)
q=0.138(§)+0.873, ford/b<03  (26)
and
—In ( md ) 27)
CcoseC b

Equation (22) is accurate within + 2 percent for s/a <1/20

and within +3 percent for s/a>1 /20 while Meier’s

ridged waveguide model [1] has i 1naccurac1es of the order of

+9 percent [4].
VI

To fabricate the appropriate finline structure, one re-
quires the normalized fin-gap d /b for a given set of s/a,
b/a, and ¢,. This can be obtained from (22) in the follow-
ing way. ‘

For- low dielectric constant and thin substrate, the
frequency-dependent effective dielectric’ constant can be
written as

SYNTHESIS

(28)

ca

w(=k-().

Using (20) and noting that

el 0 (%)

1+ 26y (2 )(e,-1)

<1
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Fig. 3. Curves representing a,(s/a) and b,(s/a) a function of

In(a/sX ay(s/a)----by(s/a)).

for0<b/a<1,1/32<d/b<1, s/a<1/20, 1<e,\375
and 0.1 < b/ <0.6, one can write

S
where

E=8[1+ %bl(%)(e,¥1)11/2 (30)
F=(%)(§—)(1+O.Z\/§)E (31)

a=0s{5)a ) -0r e s -0]

(32)
H=E(F/8+G/F) (33)
2 b)\? 2 '
I=E /8—(;) (A/b). (34)
Combining (22) and (29) gives
Z,— 2407%(px+q)(Fx+ E)(b/a) (35)

(0.385x +1.7621)*(Gx> + Hx + I

for a given set of Z,, b/a, s/a, ¢,, and b/, (35) reduces
to a quartic equation in x of the form

X+ Cx*P+ Cx?+Cix + Gy =0 (36)
where
C,=H/G +9.156 (37)
C,=1/G+9.156( H/G)+20.95 ~'6.748_££ (38)
=9.156(1/G)+20.95(H/G)—6.748( pE + qF)/GZ

(39)

C,=120.95(1/G)—6.7148(¢gE/GZ) (40)
Z=Z,/{(2407%)(b/a)}. (41)

Equation (36) can be solved easily using a suitable iterative
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TABLE 1
Normalized Normalized Cutoff Frequency b/ of the
substrate Gap dominant mode €, = 3.00
Thickness Width :
s/a da/b SDT* SH** PiAkk
1/2 0.16269 - 0.16363
1/4 0.13908 0.13840 0.13941
174 1/8 0.12146 0.12233 0.12169
1/16 0.10874 0.10814 0.10883
1/2 0.17706 - 0.17731
1/4 0.14756 0.14673 0.14853
1/8 1/8 0.12684 0.12800 0.12741
1/16 0.11244 0.11167 0.11208
1/2 0.19114 - 0.19147
L/4 0.15799 0.15640 0,15853
1/16 1/8 0.13410 0.13502 0.13448
1/16 0.11755 0.11657 0.11711
1/2 0.20275 - 0.20396
1/4 0.16881 0.16766 0.16844
1/32 1/8 0.14285 0,14364 0.14253
1/16 0.12409 0.12306 0.12386
*Spectral domaln technique [7]
**Empirical equation by Sharma and Hoefer [13]
*#*Present method
Rk
026 =
Zr J
e _fd b b/a =05
024l _{ =~ SDM ¢ =222
drb= a . SDM ¢, = 3.00
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Fig. 4. Normalized cutoff frequency (b/X /) as a function of normal-
ized fin-gap (d /b)e, = 2.22 and Z{OO, b/a=0.5.

technique to determine x, and hence d /b, since
2\ .
d/b= (;) sin~![exp(—x)].

VII. CoMPUTED RESULTS

The results computed using (11), (18), (19), and (20) are
shown in Table I and compared with those obtained using
the spectral-domain technique [7] and the empirical expres-
sions of Sharma and Hoefer [13]. The results show excel-
lent agreement. Since the expressions were derived using
the spectral-domain technique data for €, = 2.22, the excel-
lent agreement of the expression when €, = 3.00 confirms
the stationary nature of (20). Hence, (20) is a general
equation for low e, values. The expressions have been
found valid for ¢, = 3 75 within 11 percent.

(42)

WR(28)
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d/b = 1.0 't
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Fig. 5. Normalized phase velocity 1/y/e.(f) versus frequency and
characteristic impedance Z; versus frequency in WR(28) waveguide.
s/a=0.01786.

WR(19)
3 094"
K l
- S ja—
L——.ms"
15 t=188 s - .00s —1700
€= 2.2
.
4/b = 1.0
14F /_‘_, —600
TR }(SDM)
- 999/;—(;' (Presont
131 thod) ~500

~ ~o. 000Z
22 U

Z, ()

FREQUENCY (GHz)

Fig. 6. Normalized phase velocity 1/y/e.(f) versus frequency and
characteristic impedance versus frequency in WR(19) waveguide.
s/a = 0.0265957.
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TABLEII
a/e Frequency Z,(D} Z,(S) fé.l'(.f.)_(p) /s_l(—f)_(s)
_(GHz) (0hm) (Ohm) i e
40 258.754 256.689 1.0773 1.0743
45 252.733 248.420 1.0337 1.0292
0.2 50 249.338 244.012 1.00495 0.99968
55 247.180 241.716 0.98462 0.9788
60 245.556 240.695 0.96949 0.96321
65 244.078 240.499 0.95777 0.95105
40 429.924 433,563 1.2768 1.2986
45 403.359 405.294 1.1797 1.1864
0.5 50 389.174 391.762 1.1222 1.1239
55 381.068 381.429 1.0843 1.0840
60 376.327 375.360 1.0578 1.0565
65 373,585 371.724 1.03822 1.0363

D 2 pesired
4

©n

2 Synthesized

Fig. 4 compares the normalized dominant-mode cutoff
wavelength (b/A ;) in unilateral finlines, computed by the
present method, with those obtained by the spectral-domain
technique [7] for €, = 2.22 and 3.00. Figs. 5 and 6 show the
variations of normalized guided wavelength and character-
istic impedance with frequency and compare with the
results of Knorr and Shayda [4]. The agreement is within
+2 percent. This inspires confidence in the above expres-
sions.

The results of synthesis are shown in Table II for 127-pm
RT Duroid substrate in WR(19) waveguide. Z, values
were calculated, over the useful frequency band, using (22).
The computed values of Z, were then used in (36)—(41) to
compute x. The computed values of x were then used to
obtain the synthesized Z, and ¢,(f) values from the
analysis equations. It is found that the synthesized Z, are
within +3 percent and guided wavelength is within +2
percent of design specifications. Therefore, the synthesis
technique may be used to obtain an initial design, after
which the more accurate analysis equation could be em-
ployed to correct the design dimensions, if required.

VIII. APPLICATION TO COMPLEMENTARY

UNILATERAL FINLINE

The closed-form expressions derived above for analysis
of the unilateral finline can be easily applied to the com-
plementary unilateral finline, shown in Fig. 1(b), with the
following interpretations: b is twice the height of the
housing of the complementary finline, and d is twice
the gap between the tip of the fin and the bottom wall of
the housing. With this, (20) remains unchanged for the
complementary unilateral finline.

The interpretation remains the same for the characteris-
tic impedance. But, the characteristic impedance of the
complementary unilateral finline is half that of the unilat-
eral finline.

IX. CONCLUSIONS

In the preceding sections, accurate closed-form expres-
sions are developed for the cutoff wavelength and the
equivalent dielectric constant at cutoff of unilateral finlines.
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The derivation starts with the assumption of a stationary
form for the equivalent dielectric constant at cutoff. The
stationary function is subsequently determined by least-
squares curve fitting to accurate numerical data, obtained
by the spectral-domain technique. The expressions are
accurate within +0.6 percent over the complete practical
range of interest. They can be used for quick and easy
evaluation of the dispersion characteristic by hand or
calculator within +2 percent, for €, < 2.50 and b/A < 0.6.
For higher ¢,, a frequency correction of the equivalent
dielectric constant is required.

An expression is developed for the characteristic imped-
ance, based on the power—voltage definition, by curve
fitting to results obtained by the spectral-domain tech-
nique. The expression is accurate to within +2 percent for
all practical purposes.

The first-order synthesis technique gives the phase veloc-
ity within +2 percent and the characteristic impedance
within + 3 percent of originally specified values. They can
be further corrected using the more accurate analysis for-
mulas. The present analysis and synthesis equations will be
useful in computer-aided design and optimization of uni-
lateral finline circuits [18].
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General Stability Analysis of Periodic
Steady-State Regimes in Nonlinear
Microwave Circuits

VITTORIO RIZZOLI, MEMBER, IEEE, AND ALESSANDRO LIPPARINI

Abstract —The problem of analyzing the stability of periodic equilibrium
regimes in nonlinear microwave circuits is tackled by a general-purpose
computer-aided approach. By means of a perturbation technique, the search
for instabilities is reduced to a generalized eigenvalue equation expressed
in matrix form, and is then carried out by Nyquist’s analysis. The use of a
vector processor allows the computer time requirements to be kept well
within reasonable limits, even in the case of large-size problems. In
perspective, this could open the way to the complementation of existing
nonlinear CAD packages by an on-line facility for automatic stability
analysis.
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I. INTRODUCTION

‘ HIS PAPER is devoted to introducing a new numeri-
cal technique for analyzing the stability of periodic
steady-state regimes in nonlinear microwave circuits. This
problem is a very difficult one, and has been tackled in the
literature by a variety of approximations and limiting
assumptions (e.g., [1]-[6]). From time to time, the analysis
has been restricted to specific kinds of nonlinear devices,
and/or the representation of the perturbed regime has
been severely simplified, either by reducing the number of
spectral lines to be accounted for, or by resorting to the
concept of slowly changing perturbation.
On the other hand, the emphasis here is on generality. At
least in principle, our all-computer approach should be
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